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The conservationlaw for the flux of axial momentum in a turbulent jet is examined. The 
examination discloses that for a plane jet out of a wall the momentum flux is reduced 
appreciably because the induced flow towards the jet has a component in the direction 
opposite to the main jet flow and because of the pressure field generated in the ambient 
fluid. Existing experimental results confirm this conclusion. 

1. Introduction 
Previous investigators, including Townsend (1976), Albertson et al. (1950) and 

Schlichting (1960), apparently believed that the momentum flux in any jet is very 
nearly constant. In  this investigation the conservation equation for the flux of 
momentum in a turbulent jet is reformulated and used to show that there are realistic 
circumstances (e.g. in a plane jet out of a wall) where the constancy of momentum flux 
is an inaccurate approximation. 

2. Basic definitions and concepts 
A plane jet is defined as a source of fluxes of mass pp, and momentum pm, (per unit 

span) through a slot of thickness D into a finite space filled with fluid of density p. It is 
assumed that the jet is turbulent and that the ambient fluid is quiescent, except for 
flows induced by the presence of the jet. The flow regime in a large container of 
characteristic scale L 9 D may be depicted as in figure I and clearly depends on the 
shape of the container. However, the flow in some region of characteristic length 
scale 1, where D < 1 4 L (figure i), may be assumed independent of the geometry a t  a 
distance L. It is the flow in this region (the jet and the neighbouring induced flow) which 
is investigated. 

Instantaneously an irregular and sharp interface (called the turbulent interface) 
separates the fluid which is turbulent from the ambient fluid, which may be assumed 
irrotational (see Corrsin & Kistler 1954). The jump in the instantaneous velocity field 
across the turbulent interface is of order V ,  where V is some characteristic velocity of 
the turbulent jet. The thickness of the turbulent interface is of order u/V (Saffman 
1970), where u is the kinematio viscosity. If the jet carries a tracer (dye, salt, etc.) 
a sharp concentration interface divides the jet fluid from the ambient fluid. By analogy, 
the thickness of this interface is of order K/C where K is the molecular diffusivity of 
the tracer. The thicknesses of both the turbulent and the concentration interface are 
several orders of magnitude smaller than some characteristic length scale b of the jet 
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FIQTJRE 1. Hypothetical flow regime of a jet in a finite enclosure. 

Potential flow 

w I(- - /////////////// ////////////// // /// 

FIQTJRE 2. Schematic diagram of the flow induced by a plane turbulent jet out of 
a wall, based on a flow-visualization photograph by Lippisch (1968). 
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cross-section and therefore it can be assumed (even if v 9 K )  that at any instant the 
two interfaces coincide. This implies that photogxaphs of coloured jets can be used to 
distinguish regions of turbulent jet fluid from the ambient fluid. 

In  a time-exposure photograph of a jet, a fictitious but fairly well defined, time- 
independent interface appears which separates a region that is sometimes occupied 
by turbulent jet fluid from the ambient fluid. This fictitious interface will be called 
the 'jet boundary ' in this paper because it bounds the region of turbulent mixing. The 
jet boundary can be viewed as the envelope of the instantaneous turbulent (or con- 
centration) interfaces. A good photograph of a plane jet out of a wall was published by 
Lippisch (1968).  On the basis of this figure, a schematic flow diagram such as figure 2 
can be drawn which indicates the turbulent region, the jet boundaries and the stream- 
lines Y(x,y) of the outer flow (see also Kotsovinos 1975). The jet boundaries can be 
described by the equation y = +B(x) ,  where B(x) can be estimated from time- 
exposure photographs. Next the conservation equation of momentum is examined, 
keeping in mind figure 2.  

3. Conservation equation for the flux of axial momentum 
The continuity and axial momentum equations can be integrated across the jet from 

- B(z)  to B(x)  to obtain the conservation equation for the volume flux (the symbols 
are defined in figure 2) ,  

(see Kotsovinos 1978), and the conservation equation for the axial momentum, 

m(x) = (Ua+u'e+F/p)dy = m,+C(z)+H(z),  

where 

C ( x )  = 2 [ - U(z, B(x))  3(zy B(x))  -G?(z, B(x)) 

+ ( d B ( z ) / d x )  {U2(x, B(x)) + p ( x ,  B(x))}] dx 
loz  

and p H @ )  = lox 2 ( d B ( z ) / d x )  p(z, B(z)) dz. 

Previous investigators (including Schlichting 1960, p. 606; Townsend 1976, p. 193; 
Tennekes & Lumley 1972, p. 112) assumed, explicitly or implicitly, that a good 
approximation is to assume that H ( x )  = C(z) = 0 for any x so that 

m(x) = ( G 2 + P + p / p ) d y  = m,. ( 3 )  
L e t  

Equation ( 3 )  (which states the constancy of the total flow force pm(x) across the jet) 
plays a major role in understanding and explaining the basic features of the jet 
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mechanics. However, there is a tendency to take (3) as a universal law and use it for 
calibration (Flora & Goldschmidt 1969) or as a test for good experimental results. 
It is the objective of this paper to show that this tendency is in general unjustified and 
that there are realistic cases where the terms H ( x )  and C(z) cannot be neglected. Now 
the magnitude of these terms is estimated. 

The analysis of Phillips (1955) and Stewart (1956) and the experimental results of 
Bradbury (1965) can be used to show that for a plane jet out of a wa11 the terms U'B and 
u'v'(x, B(x)) (representing fluctuations of the induced flow field) are negligible in com- 
parison with the time-averaged terms $(x, B(z) )  and E(z ,  B(z) )  V(z, B(x)).  

The time-averaged mean pressure along the (fictitious) jet boundaries y = & B(z)  
can be calculated from the Bernoulli theorem, since the outer flow can be assumed 
irrotational (Corrsin & Kistler 1954; Stewart 1966): 

- 

4{wG B ( 4 )  + V2(x, B ( 4 ) )  +F(x, B(x)) /p = 0 

(where jj is the pressure relative to the hydrostatic pressure). Assuming that 
- 
u(x, B(s))  = @(x, B(z) )  tan $(x) 

(see figure 2) and using (1) gives 

jj(x, B(x))  = p( 1 + tan2 $) (dp/d~)~/S( - 1 + k tan $)2, 

where k = dB(x)/dx. 
It is therefore apparent that 

and 

It is clear that the term C ( x )  (due to the induced velocity field) can be either positive 
or negative, depending on the angle q5 (which in turn depends on the existence of solid 
boundaries close to the jet). However, the term H ( x )  (due to the ambient pressure) is 
always negative. Clearly the parameters that should be specified in order to integrate 
numerically or analytically the functions C ( x )  and H ( x )  are the angle $(x), the curva- 
ture k of the jet boundary and the volume flux p(x). I n  the region of flow establishment 
(x < 6D) the experimental results of Liepmann & Laufer (1947) can be used to obtain 

dp(z)/dx = 0.064Z0 = 0.064(m0/D)), 

where Tio is the velocity a t  the exit of the jet. For x > 6D the jet is fully developed and 
the increase in volume flux dp(x)/dx can be assumed to be of the form 

d,u(x)/dx = 0.28rn$z--*. (6) 

The angle $(x) depends on the solid boundaries close to the jet (see Taylor 1958). In  
this study the special case of a plane jet out of a wall is examined. The flow visualization 
in figure 2 is used to get rough estimates of the angle $(x). It is recognized that more 
detailed visualization (or experimental studies in general) of the induced flow field is 
needed for better estimates. For simplicity it is assumed as a fair approximation that 
$(x) is constant at a value an for values of x larger than 6D and that for 0 < x < 6D the 
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angle $ ( x )  increases linearly from zero to an. It is also estimated that B(x) w 5 0-25x, 
i.e. k w 5 0.25. It is then easy to integrate ( 4 )  and ( 5 )  to find that for z > 6 D  

m(x) /mo w 0.983 - 0-0693 In ( x / 6 D ) .  (7) 

The important conclusion from (7) is that the flow force pm(x)  is not constant but 
decreases as the distance x increases. For example, (7) predicts that at x = 1000,  
m(s)/m, w 0.8. It is recognized that the coefficients which appear in ( 7 )  have been 
derived from estimates of the parameters q5(x), B ( x )  and d,u(z)/dz. However, these 
estimates are good enough to support the point of this study: that ( 3 )  is not a valid 
approximation for a plane jet out of a wall. A comparison with experimental results is 
presented in the next section. 

Equation ( 6 )  [which has been used to derive (7)] has been derived from dimensional 
analysis under the assumption that the increase in volume flux (entrainment) is 
dependent on the initial momentum fluxpm, and the distance x but independent of the 
induced flow and the ambient pressure. Therefore (6) and ( 7 )  should be viewed as 
valid approximations for values of x of the order of a few thousand slot thicknesses. 

4. Experimental results 
In  this section existing experimental results will be used to calculate the flow force 

p m ( x )  at various distances x. Miller & Comings (1957) and Bradbury (1966;) found 
experimentally that the distributions of Ti' and p/p across the jet are of the same order 
and of opposite sign, so that it seems a very good approximation to assume that 

which implies that 

i.e. that the jet flow force is equal to the momentum flux of the mean flow across the jet 
(usually called the 'momentum flux'). 

Other experimental studies (Miller 1957; Goldschmidt & Eskinazi 1966; Reichardt 
1942; Van der Hegge Zijnen 1957) showed that the cross-sectional distribution of the 
time-averaged mean axial velocity U(x, y) can be very well described in the region 
y < 10.17~1 by a Gaussian curve of the form 

V(z, Y) = G m ( 4  exp { -1n [2(Y/b(4)21}, 

where U,(z) = U(x, 0 )  and where b(x)  is the velocity half-width defined by the relation 
G(x, k b ( x ) )  = $&(x). For y 2 I0-17~1 the experimental data deviate from the Gaussian 
curve. For the specific case of a plane jet out of a wall (figure 2) the axial velocity along 
the jet boundaries should be negative (if the velocity along the jet axis is defined as 
positive), so that the velocity profile should, ideally, be as in figure 3.  It is apparent 
that the location where U(x, y) = 0 is inside the turbulent region. The existing experi- 
mental results on the mean velocity profile are of limited value for (approximately) 
y > 1 0 . 1 7 ~ )  because the Pitot tube and the hot wire are inadequate instruments when 
flow reversal occurs. 
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FIamE 3. Sketch of the 'true' velocity and intermittency profiles in a plane turbulent jet out 
of a wall. ---, Z(z, y)/Zm; -*-, Gaussian approximation; --- , intermittency factor. 

Fortunately, these experimental difficulties are not important for this investigation 
because the axial velocity profile in the region y < 10.17~1 (where experimental data of 
high accuracy are obtained) contributes more than 99 yo of the axial momentum flux 
pm(x), as defined by (8). In order to demonstrate this, it will be assumed for the 
moment (and without loss of generality) that b(z) = 0 . 1 ~ .  It is then easy to show that 

= 0*997(n/2 In 2 ) i  b ( z )  Uk(x), (9) 

i.e. the kinematic momentum flux m(x) can be calculated fairly accurately from 
experimental data using the relation 

m(x) = (n/2 In 2)t  b(z) i?(z). (10) 

The initial momentum flux of a plane jet is 

pm, = pAiigD, 

where Go = U ( 0 , O )  and A is a constant which depends on the exact shape of the velocity 
profile at x = 0. For any particular group of measurements, A is a constant. For a 
uniform initial velocity profile A = 1. I n  general, 

W Z ( X ) / ~ ,  = A-l(n/2 In 2)t (GL(z)/U;) b(z) /D.  (11) 
If the momentum flux m(x) is a constant, then the ratio Am(x)/m, should be a constant 
for any x. This ratio, calculated from experimental results presented in the literature, 
is tabulated in table 1 and plotted in figure 4 'us. the distance x/D from the jet exit. 
The interesting conclusion is that the ratio Am(x)/m, for a particular group of 
measurements decreases with increasing x/D,  which implies that the momentum flux 
m(x) in a plane jet out of a wall is not constant. The experimental results of 
Heskestad (1965) and of Kotsovinos (1976) agree quite well with the prediction 
from (7) for A w 0.88. 

Since the constancy of momentum flux has been viewed as an exact and unquestion 
able statement by many investigators, it  is possible that some of them used 'the 
constancy of momentum' to calibrate their Pitot tubes (see Flora & Goldschmidt 
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Heskestad (1965) 

Kotsovinos (1975) 

Investigator XlD 
Miller (1957) 10 

20 
30 
40 

Goldschmidt & Eskinazi (1966) 25 
30 
35 
40 
45 
50 
60 

47 
65 
85 

103 
125 
155 

14 
20.8 
33.15 
37.60 
37-0 
54.17 
58.75 
74-16 

b l D  
1-11 
2.07 
3.03 
3.99 

2.40 
2.89 
3.38 
3-87 
4.37 
4.86 
5.84 

4-71 
6.69 
8.89 

10.87 
13.29 
16.59 

1.8 
2.14 
3.33 
3.76 
3.54 
5.42 
5.96 
7.08 

iiyii: 

0.540 
0.289 
0.184 
0.144 

0.252 
0.20 
0.165 
0.141 
0.123 
0.109 
0.089 

0.105 
0.071 
0.052 
0.049 
0.034 
0.027 

0.337 
0.275 
0.169 
0.145 
0.152 
0.092 
0.084 
0.066 

Am(x)l% 

0.903 
0.900 
0.84 
0.86 

0.91 
0.87 
0.84 
0.82 
0.81 
0.80 
0.78 

0.744 
0.710 
0.692 
0.680 
0.674 
0.666 

0.91 
0.89 
0.85 
0.82 
0.81 
0.75 
0.75 
0.70 

TABLE 1. Experimental data. The last column is calculated from equation (11). 
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FIGURE 4. The normalized momentum flux Am(x) /m,  (table 1) vs. the non-dimensional distance 
z / D .  A, Goldschmidt (1964); 4, Heskestad (1965); 0, 0, Kotsovinos (1975); 0 ,  Miller (1957). 

1969) or to adjust their results. Albertson et al. (1950) reported that the momentum 
flux was constant (to within 1-2 %) up to 23000, which contradicts the much more 
accurate measurements of other investigators (reported in table 1) and the analysis 
of this study. It therefore seems reasonable to  discount the conclusion by Albertson 
et al. (1950) of constancy of the axial momentum. 
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Goldschmidt (1964) speculated that the boundary layers along the two confining 
walls (parallel to the x, y plane) are responsible for the momentum deficiency observed 
in his experimental results. However, these two boundary layers do not reach the 
mid-plane parallel to the two confining walls (where measurements are taken) for 
x < 2h-3h (where h is the separation of the two confining walls), as was demonstrated 
by Van der Hegge Zijnen (1957) and Heskestad (1965). On the other hand it is esti- 
mated, assuming a friction coefficient cf about 0-01, that the total force along the walls 
is negligible relative to the input total force pmoh. 

Kraemer (1971) predicted that for a plane jet out of a wall 

This result should not be confused with the reduction mo-m(x) in the kinematic 
momentum flux, because 

mo - m(4 = 2 yz) G2(x, Y) dY + 2 1 @(x, Y)/P) &/ - 2 1 ( H O ,  Y ) / P )  dY. 
B ( x )  B(0) 

In Kraemer’s (1971) analysis both pressure integrals diverge and therefore his analysis 
can not be used for realistic estimates. 

5. Conclusions 
A basic feature of free jets is that they induce flow towards themselves. In  the 

particular case of a plane jet out of a wall the induced flow has a component in the 
direction opposite to the jet flow, which tends to reduce the momentum flux from the 
input value. I n  addition, the pressure field which builds up throughout the potential 
region has a positive gradient, which also tends to reduce the momentum flux. A rough 
estimation shows that this reduction is not negligible. An approximate model for the 
reduction in the momentum flux is proposed and is found to be in fair agreement with 
existing experimental results. 
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